

railML and ÖBB asset-database applications UIC, Paris 2013-09-18

Andreas Pinzenöhler

IQSOFT Gesellschaft für Informationstechnologie mbH Schönbrunner Str. 218, Stiege B A-1120 Wien Austria

web: www.iqsoft.at

E-Mail: a.pinzenoehler@iqsoft.at

IQSOFT

- Established 1999
- Staff: 35
- Independent IT Service Provider
- 150 person years project experience in railway solutions
- Areas of railway expertise
 - Asset databases
 - permanent way, track geometry, platforms, avalanche barriers, noise barriers, culverts, drainage lines ...
 - Telecom (cables, equipment, locations ...)
 - Data acquisition processes with measurement and survey equipment
 - Data analysis (Laserscan, object recognition,)
 - Railway geocoding
 - Reference systems
 - Line description (IM \rightarrow RU)

Context – business processes with railML potential

Context – R & D Project

Work-packages systemintegration

- Support system verification and testing
- Dataexchange interface LandXML
 - → operational today

Evaluation of railML

→ potential interfaces to "Track layout Software"

Evaluation of railML

- Analysis of prior work
 - railML Schema Version 2.1
 - "Verifizierung von railML-Daten mithilfe von Schematron" (Susanne Wunsch 2010)
 - railML-Wiki
- Definition of research topics
- Implementation of a functional prototype with real world data targeting railML-Version 2.1 (2012/09)

railML specific topics

- Can we produce a valid railML document from real world geometry data?
- Required extensions of the existing railML standard to exchange real world trackgeometry layout information?
- Which extensions have to be applied to the structure of the existing asset database?
- Necessary adaptions of processes related to the existing asset database?

Q: does railML provide a potential base for exchange of infrastructure data? A: basically yes

Q: has railML to be extended for the exchange of trackgeometry data A: yes

Q: may railML schema extensions be applied using xs:any? A: no

Q: should ÖBB-specific railML schema extensions be applied A: at first some fundamental issues have to be addressed

Some combinations of tracks and switches cannot be modelled

see also:

http://www.railml.org/forum/ro/?group=1&offset=0&thread=56&id=296

discussion of workarounds using "fictive" elements

railML assumption: the processed dataset is complete and consistent

real world: datasets are portions of the full dataset

Infrastructure processes DO NOT operate on the complete network

S O F T

railML assumption: positioning is straightforward real world: positioning is full of hidden pitfalls and misunderstandings

- 44 different registered line designations
- 4 different registered track designations
- Mile post has 3 different accuracy levels
- Mile post may have 2 different stations within one accuracy level (station change)
- Coordinates:
 - at least six different application areas
 - accuracy ranging from meter to millimeter

railML assumption: tracks and switches come as twins real world: there is no such thing in rail infrastructure

Tamping machines: switches are an obstacle

Telecom cables: they do not take notice of a switch

Switch inspection: is already done in the factory before delivery

Switch Inspection

railML assumption: data basis is complete and without errors

real world: there are missing parts and there are wrong parts

^{IQ}S 0 F T

railML assumption: structural dependence between asset and track real world: many assets exist without any track information

- Lifecycle considerations
 - Asset basically possesses a relation to a track, but not in all phases of the lifecycle
- No structural dependence at all
- Structural dependence to a line
 - asset relates to ONE line but to one or MORE tracks

Assets without relation to tracks - examples

Brigde is in the early planning stage

Track data will be available in 2 months

Track was abandoned 20 years ago Brigde still has to be maintained

Assets without relation to tracks - examples

Switch is measured in the factory

Measurement results are documented in asset database without related tracks

Ø		В	E	3
	I	N	F	RA

Hauptmenü M	lessen/Prüfen V	Veichenuntersuchungsblät	ter Weichenreport	Werksmessung
	W	erksweichen		
Geometriedaten				
Geometriecode *	EW 54E2-500-1:14 Fsch	Schmalspur?	Ν	
Geometriebezeichnung		Radius	500	
Schienenform	54E2	Leistungslänge	82	
Rollenvorrichtung	0	Bauart		

Speichern Verwerfen

Untersuchung	Spurweitenprüfung										Leitweite							
	а	b	c1	c2	d1	d2	e1	e2	f1	f2	h1	h2	1	12	m1	m2	ZuPr	
	1435	1437	1435	1435	1435	1435	1435	1435	1435	1435	1394	1394	62	62	45	45	gut	Sollwert
	14	14	14	14	14	14	12	12	12	12	3	3			6	6		Gr. SES
	10	10	10	10	10	10	8	8	8	8								Gr. ES
	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2			-2	-2				KI. ES
	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-2	-2	-4	-4	-4	-4		KI. SES
Rausch Johannes	0	1	1	0	1	-1	1	0	3	0	2	2	10	11	1	0	gut	Messwert
22.04.2011																	OK	SAM-Status

Assets with relation to two or more tracks - examples

Railway crossing intersecting one street and two tracks

Assets without any structural dependence to tracks

Noise barriers

Avalanche barriers

Telecommunication equipment

- railML is still not ready for our usecases
- Further development of railML is definitely worth watching
- Minor changes (version 2.3 ?) may allow railML based interface definitions for track geometry
- Majority of considered usecases require a major, even radical redesign (version 3.0 ??)

Development of railML 3.0 – some deliberations

