

5th conference

Transport Solutions: from Research to Deployment Innovate Mobility, Mobilise Innovation! Paris - La Défense CNIT, 14 - 17 April 2014

Capacity4Rail

Toward a resilient, innovative and high capacity European railway system for 2030/2050

<u>Schmitt, Laurent*</u>, UIC, France Létourneaux Fabien, Systra, France De Keyzer, Isabelle, UIC, France Crompton, Paul, ARTTIC, Belgium

* lschmitt@uic.org

STS N°23

Project ID

- FP7 6th call SST.2013.2-2 topic on "New Concept for Railway infrastructure and operation: adaptable, resilient and high capacity
- Budget 15 M€ (9.9 EU funded)
- Start date : 01/10/2013
- Duration : 48 months
- Partners : 46
- Grant Agreement : 605650

The overall objective of CAPACITY4RAIL is **to increase capacity, availability and performance of the railway system** through major step changes in:

- infrastructure design
- construction and maintenance (including advanced monitoring)
- operation management
- Recovery from disruptions
- freight operations and specification for rolling stock

Adding more resources, more infrastructures

- Financial constraint
- Very long term impact
- Environmental impact

Reduction of capacity-consumers

- Resilient infrastructure
- > Low maintenance infrastructure
- Minimum possession for maintenance and inspection
- Fast renewal and construction
- Reliable vehicles

- More efficient use of existing resources
 - Optimisation of operating strategies
 - Traffic planning
 - > Transhipment procedures
 - Better recovery from traffic disruption
- Improved performance of existing resources
 - > Higher carrying capacity of trains
 - > Higher speed of freight trains

TRA

STS N° 23

Project structure breakdown

Laurent Schmitt

TRA2014 Paris 14-17 avril 2014

5

C4R five key drivers

Affordable

- Mode of choice for investors and users
- Optimised CAPEX, OPEX, LCC, transparent and predictable
- Minimised impact on environment

Adaptable

Flexible and extensible, adapted to economical environment
Able to cope with daily, weekly, yearly or seasonal variations

Automated

> To release human resources for high value activities

C4R five key drivers

Resilient

- Robust low incidence of failures
- Able to quickly recover from disturbed conditions
- Not only dramatic disturbances but also minor deviations

High Capacity

- Virtually no constraints on operations
- Can accommodate customer's demand at any time
- Tolerates interventions with minimal impact

SP5 – Assessment and Migration

SP1 – Infrastructure New concepts for mixed traffic and VHS

Innovative concepts

- Focusing on slab track solutions
- adapted for future mixed traffic conditions (SP2, 3)
- Cost-efficient design and construction
- Modular design.
- Integrated energy supply and signalling
- Noise & vibrations
- > Upgrade of existing

SP1 – Infrastructure New concepts for mixed traffic and VHS

Very high speed (>350 km/h)

- Cross-compatibility with high speed freight
- Identification of limitations to VHS
- Noise, vibration
- Ballast projections
- Dynamic short term behaviour of VHST
- Bridge design, transition zones

SP1 – Infrastructure Version New concepts for mixed traffic and VHS

Switches and crossings

- Prioritisation according to operational failure modes
- Innovative designs minimizing S&C loads and material deterioration
- Automatic monitoring of S&C critical elements
- Resilience to natural hazards

Modern fully integrated rail freight system for 2050

- 1. Customer-oriented vision within different good segments, to identify future demand.
- 2. Gap analysis for vehicles, intermodal systems and operation principles
- 3. Specification of development to be implemented
- 4. Conceptually **design the rail freight vehicles** of. 2015, 2020, 2030

SP2 - Freight

Market needs :

- Continuous dynamic information
- Door-to-door competitive and frequent service
- Reliability

Technological challenges:

- Increasing the speed without decreasing the load
- Improve train manoeuvrability : instant braking and acceleration capabilities
- Intelligent and connected wagons
- Industrialisation of train production -> automatic coupling

SP3 - Operations

Capability trade-offs

Review of planning and operational approaches

Models and simulation

Framework for modelling and simulation allowing evaluation of new operational concepts

Optimal Strategies

Definition of operational strategies for recovery from extreme situations

Data Modelling and supporting data architecture

for the collection, integration and management of data in operational decision making

Introducing new technologies for advanced monitoring solutions

- Miniaturisation,
- low power consumption,
- easy integration into structures and components,
- wireless data exchange
- Migration from other industries to railway.
- Implementation in existing and new structures

Laurent Schmitt

Technology Readiness Levels

TRL9	Actual system qualified through operation
TRL8	Actual system qualified through test
TRL7	System prototype in Operational environment
TRL6	System prototype in relevant environment
TRL5	Component validated in relevant environment
TRL4	Component validated in lab
TRL3	Analytical experimental proof of concept
TRL2	Technology concept formulated
TRL1	Basic principles observed

STS N° 23

Laurent Schmitt

IIRA2014 Paris 14-17 avril 2014

Projects outputs

Specifications

- Future slab track systems and new concepts of switches and crossings
- Desirable standards for wagons, locomotives, gauge, infrastructure design, train and infrastructure management
- Use of sensors in railway environments and wireless transmission

Guidance documents

- Combined rams and cost-oriented design of infrastructure
- Design of flood-resilient track systems and subgrade ; bridges for very high speed.
- Optimised slab track and self-monitoring switches
- Freight terminal design Efficient freight vehicle systems
- Incident and emergency management

Demonstration

- New concepts of self-monitoring switches
- Innovative slab track system
 - Retro-fit monitoring systems on existing infrastructures

The C4R consortium

Laurent Schmitt

Conclusion

Opportunities

- A project bringing together the whole range of rail stakeholders
- A close link with the past and current research as well as the future Shift²Rail initiative
- There is a political will and a pressure from customers and public in favour of technical solutions for a better performing railway.
- > Better chance for implementation

Challenges

- Railway is a complex and sensitive system
- How to trade-off the requirements of different businesses and traffics?
- Implementability and migration are key issues
- Only affordable solutions will drive traffic back to rail

Thank you for your kind attention

Collaborative project SCP3-GA-2013-60560

www.capacity4rail.eu

Project supported by the European Commission through the Seventh Framework Program (FP7)

